2012/03/02

SUMMARY of alleged image fraud (+ other research misconduct)

Bharat Aggarwal (MD anderson cancer center)
Article No.1 → Antioxid Redox Signal. 2012 Mar 1;16(5):413-27.
Article No.2 → Br J Pharmacol. 2012 Feb;165(3):741-53.
Article No.3  Biochim Biophys Acta. 2012 Jan 10. [Epub ahead of print]
Article No.4  J Biol Chem. 2012 Jan 2;287(1):245-56.
Article No.5  Cancer Lett. 2011 Dec 17. [Epub ahead of print] (Withdrawn)
Article No.6 → Biochem Pharmacol. 2011 Dec 15;82(12):1901-9.
Article No.7 → Biochem Pharmacol. 2011 Nov 1;82(9):1134-44. 
Article No.40 → Cancer Res. 2008 Nov 1;68(21):8861-70.
Article No.41 → Mol Cancer Ther. 2008 Oct;7(10):3306-17.                               
Article No.42 → Cell Microbiol. 2008 Jul;10(7):1442-52.
Article No.43 → Mol Cancer Res. 2008 Jun;6(6):1059-70.
Article No.44 → Cancer Res. 2008 Jun 1;68(11):4406-15.
Article No.45 Blood. 2008 May 15;111(10):4880-91.
Article No.46 → Mol Pharmacol. 2008 May;73(5):1549-57.
Article No.47  Blood. 2007 Nov 15;110(10):3517-25.
Article No.48  Oncogene. 2007 Nov 15;26(52):7324-32.
Article No.49  Mol Cancer Res. 2007 Sep;5(9):943-55.
Article No.50 → Blood. 2007 Jun 15;109(12):5112-21.
Article No.51 → Clin Cancer Res. 2007 May 15;13(10):3024-32.
                         (Mol Cancer Ther. 2010 Feb;9(2):429-37.)
Article No.52 → Clin Cancer Res. 2007 Apr 1;13(7):2290-7.
Article No.53 → Biochem Pharmacol. 2007 Apr 1;73(7):1024-32.
Article No.54 → Blood. 2007 Apr 1;109(7):2727-35.
Article No.55  Blood. 2007 Mar 15;109(6):2293-302.
Article No.56  Oncogene. 2007 Mar 1;26(10):1385-97.
Article No.57 → Toxicology. 2006 Nov 10;228(1):1-15.
Article No.58  J Immunol. 2006 Oct 15;177(8):5612-22.
Article No.59  Mol Pharmacol. 2006 Jan;69(1):195-206.
Article No.60 → Clin Cancer Res. 2006 Jan 15;12(2):662-8.
Article No.61, 62, 63, 64, 65 → J Immunol. 2000 Nov 15;165(10):5962-9. 
                                                Cancer Res. 2000 Jul 15;60(14):3838-47.
                                                J Immunol. 2000 Jun 15;164(12):6509-19.
                                                J Immunol. 2000 Jun 1;164(11):5815-25. 
                                                J Immunol. 1999 Dec 15;163(12):6800-9.


Houston Chronicle paper
    M.D. Anderson professor under fraud probe


Retraction Watch

2012/02/17

Epidermal growth factor (EGF) activates nuclear factor-kappaB through IkappaBalpha kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IkappaBalpha.


Oncogene. 2007 Nov 15;26(52):7324-32. Epub 2007 May 28.

Epidermal growth factor (EGF) activates nuclear factor-kappaB through IkappaBalpha kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IkappaBalpha.

Source

Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.


gure 1C, 1D - b-actin loading control in lanes 1-4 of A, is the same as b-actin in D. 



Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis.


Mol Cancer Res. 2008 Jun;6(6):1059-70.

Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis.

Source

Cytokine Research Laboratory, Department of Experimental Therapeutics, University of Texas M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.


Figure 6B - Panels B1 and B2, same images used for un-treated and TQ treated groups.



Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1.


Mol Pharmacol. 2009 Mar;75(3):525-33. Epub 2008 Dec 22.

Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1.

Source

Department of Experimental Therapeutics, Cytokine Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.


Figure 1D - Lanes 3 and 4 (10 and 25 dose) are identical to Figure 1G (SCC4 +/-)



Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1.


Mol Cancer Res. 2009 Jan;7(1):118-28.

Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1.

Source

Cytokine Research Laboratory, Department of Experimental Therapeutics, Unit 143, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.


Figure 2B - STAT3 loading control is identical in left and right panels (IL-6 vs. IL-6+AKBA).
Figure 4A, 4C, 5D - b-actin loading control is the same for all 3 panels.




Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: Evidence for an essential role of reactive oxygen species.


Cancer Res. 2009 Aug 15;69(16):6581-9. Epub 2009 Aug 4.

Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: Evidence for an essential role of reactive oxygen species.

Source

Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA.


Figure 3B - DR5 siRNA.  "Medium" and "Zerumbone + TRAIL" panels are identical.
Figure 5A - DR4 and DR5 blots, vertical seam between lanes 5 and 6.